A Low Cost, High Capacity Regenerable Sorbent for Pre-Combustion CO₂ Capture Contract No. DE-FE0000469 Project Briefing

Gökhan Alptekin, PhD Ambal Jayaraman, PhD Robert Copeland, PhD

NETL CO₂ Capture Technology Meeting

> Pittsburgh, PA July 12, 2012

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Objective

- The objective is to develop a new pre-combustion carbon capture technology and demonstrate its techno-economic viability
- A mesoporous carbon grafted with surface functional groups that remove CO₂ via physical adsorption above the dew point of the synthesis gas

• Budget Period 1

- Sorbent optimization and production scale-up
- Bench-scale evaluations
- Process design and optimization
- Budget Period 2
 - Demonstrate sorbent life for 10,000 cycles
 - Slipstream demonstration using actual synthesis gas
 - Conduct an economic analysis to estimate the cost of CO₂ capture

Project Partners

TDA's Approach

- The sorbent consists of a carbon material modified with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow high T operation
 - Because there is no covalent bond, energy input for regeneration is low
- Heat of adsorption of CO₂ is 4.9 kcal per mol for TDA sorbent
 - Selexol ~4 kcal/mol
 - Amine solvents ~14.4 kcal/mol
 - Chemical absorbents 20-40 kcal/mol (Na₂CO₃→NaHCO₃ 30 kcal/mol)
 - $Na_2CO_3 + CO_{2(g)} + H_2O_{(g)} \rightarrow 2NaHCO_3 (\Delta H = -30 \text{ kcal/mol})$
- Net energy loss in sorbent regeneration is similar to Selexol
 - A much better IGCC efficiency due to higher temperature CO₂ capture
 - Warm gas clean-up improves cycle efficiency 2 to 4%
 - Potential for even higher efficiency by integrating WGS/CO₂ removal processes (3 to 6% improved efficiency)
 TDA

IGCC-Integrated CO₂ Capture System

Regeneration Options

• Physical adsorbent provides flexibility in regeneration

- Temperature swing
- Pressure swing
- Concentration swing
- Any combinations
- Isothermal operation is critical to eliminate heat/cool transitions which reduces cycle time and increases sorbent utilization
- Steam consumption can be reduced significantly if steam purge is carried out at low pressure

6

Research

TDA's Sorbent

- A mesoporous carbon is used to disperse the active sorbent phase
- The carbon support is previously developed for ultra-capacitors, large pores to achieve liquid transport
- The preparation process enables us to introduce various surface groups active for removing different compounds
- Large pores accommodate different active groups

CO₂ Isotherm and Heat of Adsorption

Pressure (psia)

Langmuir Coefficient (q _s)	386.4	mmol/g
Langmuir Coefficient (B)	4.15E-04	1/atm
Langmuir Coefficient (n)	0.869	
Diffusion Coefficient (D/R ²)	1.32E-03	1/s
Reference Temperature for B	240	°C
Heat of Adsorption (Δ H)	4.8	kcal/mol

Calorimetry Measurements

 Isosteric heat of adsorption calculations and DSC experiments confirm the low heat of adsorption

Research

⁸

Multiple Cycle Tests

• Sorbent maintained its CO₂ capacity (8+%wt.) for ~12,000 cycles

TDA Research

Impact of Sulfur

• Presence of H₂S did not have a significant impact on sorbent performance

TDA Research

PSA Cycle Design

Process Design and Modeling

CO₂ Purification & Compression

System Analysis Results

E-Gas Gasifier	IGCC - Selexol	IGCC - Selexol	IGCC -TDA WGC
	Calibration Case	90% Capture	90% Capture
CO ₂ Capture	88.2	90	90
Gross Power Generated, kWe	696,770	691,624	711,083
Net Power, kWe	524,772	516,126	572,398
Net Plant Efficiency, % HHV	32.1%	31.6%	33.5%
COE, mills/kWh		98.6	91.0
COE (inc. TS&M), mills/kWh		103.9	96.0

Model results validated based on DOE/NETL 2007/1281

- IGCC plant with TDA's CO₂ capture technology system achieves higher efficiency than IGCC-Selexol
 - 33.5% vs. 31.6% for E-Gas gasifier
 - 34.2% vs. 32.4% for GE gasifier
- Cost of electricity with IGCC-TDA-WGC is ~8 mills/kWh lower than that of IGCC-Selexol

Process Design Modifications

Integration of 3rd stage WGS with the warm gas carbon capture

- Commercial WGS catalyst (Shiftmax 230) co-located with the sorbent
- Cycle efficiency increase to 35+% due to reduced steam consumption
- Lower CAPEX

 Promising performance data (Advanced Carbon Capture Concept for Low Rank Coals - DE-FE-0007966)

15

esearch

• 7.82% wt. CO₂ loading (5.68% is from conversion of CO into CO₂)

Process Design Modifications (Cont'd)

Cycle optimization to increase H₂/syngas recovery (i.e., CO₂ purity)

- Baseline syngas recovery in the sorbent beds = 88%
- Target recovery = 95% (via product purging)
- Lower CAPEX due to reduced cost of purification system

Slipstream Demonstrations

 Two 3-week test campaigns for proof-ofconcept demonstrations

Wabash River IGCC Plant, Terre Haute, IN

- Largest single-train gasifier with 262 MW power output
- Oxy-blown E-Gas[™] Gasifier
- Operates on petcoke

National Carbon Capture Center, Wilsonville, AL

- Demonstration in November, 2011
- Pilot-scale gasifier
- Air-blown transport gasifier
- Operates on coals and lignites

System Pictures – Prior to Insulation

Skid #1 - Synthesis gas pretreatment skid

Skid #2 - CO₂ removal skid

Test Units – In NEMA-Rated Enclosures

CO₂ Removal Skid

Gas Conditioning Skid

Control System

Skid #1

Skid #2

System is fully automated and remotely controlled

Field Test Units Installed at Site

Field Test Data – November 23 2011

Performance in Slipstream Tests

- Sorbent maintained a stable 12% capacity for 500 hrs of testing and over 2,000 cycles
- Sorbent maintained CO₂ capacity before and after field test
 - 2.6% wt. CO₂ capacity at P_{CO2}= 38 psi
- Sorbent capacity under Wabash condition (P_{CO2} = 114 psi) increases to 7.03% wt.
- Next generation E-Gas gasifier is expected to operate at 750 psi (P_{CO2}= 240 psi) and the prototype unit achieved 9.94% wt. CO₂ capacity at 750 psi

23 $\frac{\mathbf{TDA}}{\mathbf{Research}}$

Wabash River IGCC Demonstration

- Process Hazard Analysis is complete
- Tie-in location is identified
 - Downstream of a COS hydrolysis unit
 - ➤ T= 194°C $H_{2}O + CO_{2}$ saturator to acid plant P= 357 psia Tie-in acid gas location coolina cold emoval water box steam raw oxygen filter syngas air clean syngas dryer product generator ombusto COS→H_s compressors hydrolysis clean stack main air combustion gas gasifier compressor water turbine scrubber heat recovery flyash steam generator radiant and water coa. convective syngas syndas co pump rod mill generator cooler saturated steam 120 MW steam econ om ized water and turbine boiler feed water recycle fines slurry con d en ser 🚽 cooling pump lockhopper wat er condensate pump slag and water

24

Research

- > All site modifications are completed based on TDA's utility requirements
- Scheduled to start in early August 2012

Acknowledgements

DOE/NETL

Arun Bose - DOE Project Manager

Partners

Ashok Rao - University of California, Irvine Albert Tsang – Phillips 66 Shrinivas Lokare – Phillips 66 Frank Morton – Southern Company Tony Wu – Southern Company Paula Walmet – MWV

